TransformerMixin#
- class sklearn.base.TransformerMixin[Quelle]#
Mixin-Klasse für alle Transformer in scikit-learn.
Dieser Mixin definiert die folgende Funktionalität
eine
fit_transform-Methode, die anfitundtransformdelegiert;eine
set_output-Methode, umXals spezifischen Containertyp auszugeben.
Wenn get_feature_names_out definiert ist, wickelt
BaseEstimatorautomatischtransformundfit_transformein, um dieset_output-API zu befolgen. Details finden Sie in der Entwickler-API für set_output.OneToOneFeatureMixinundClassNamePrefixFeaturesOutMixinsind hilfreiche Mixins zur Definition von get_feature_names_out.Beispiele
>>> import numpy as np >>> from sklearn.base import BaseEstimator, TransformerMixin >>> class MyTransformer(TransformerMixin, BaseEstimator): ... def __init__(self, *, param=1): ... self.param = param ... def fit(self, X, y=None): ... return self ... def transform(self, X): ... return np.full(shape=len(X), fill_value=self.param) >>> transformer = MyTransformer() >>> X = [[1, 2], [2, 3], [3, 4]] >>> transformer.fit_transform(X) array([1, 1, 1])
- fit_transform(X, y=None, **fit_params)[Quelle]#
An Daten anpassen, dann transformieren.
Passt den Transformer an
Xundymit optionalen Parameternfit_paramsan und gibt eine transformierte Version vonXzurück.- Parameter:
- Xarray-like der Form (n_samples, n_features)
Eingabestichproben.
- yarray-like der Form (n_samples,) oder (n_samples, n_outputs), Standardwert=None
Zielwerte (None für unüberwachte Transformationen).
- **fit_paramsdict
Zusätzliche Fit-Parameter. Nur übergeben, wenn der Estimator zusätzliche Parameter in seiner
fit-Methode akzeptiert.
- Gibt zurück:
- X_newndarray array der Form (n_samples, n_features_new)
Transformiertes Array.
- set_output(*, transform=None)[Quelle]#
Ausgabecontainer festlegen.
Siehe Einführung in die set_output API für ein Beispiel zur Verwendung der API.
- Parameter:
- transform{“default”, “pandas”, “polars”}, default=None
Konfiguriert die Ausgabe von
transformundfit_transform."default": Standardausgabeformat eines Transformers"pandas": DataFrame-Ausgabe"polars": Polars-AusgabeNone: Die Transformationskonfiguration bleibt unverändert
Hinzugefügt in Version 1.4: Die Option
"polars"wurde hinzugefügt.
- Gibt zurück:
- selfestimator instance
Schätzer-Instanz.