Kernel#
- class sklearn.gaussian_process.kernels.Kernel[source]#
Basisklasse für alle Kernel.
Hinzugefügt in Version 0.18.
Beispiele
>>> from sklearn.gaussian_process.kernels import Kernel, RBF >>> import numpy as np >>> class CustomKernel(Kernel): ... def __init__(self, length_scale=1.0): ... self.length_scale = length_scale ... def __call__(self, X, Y=None): ... if Y is None: ... Y = X ... return np.inner(X, X if Y is None else Y) ** 2 ... def diag(self, X): ... return np.ones(X.shape[0]) ... def is_stationary(self): ... return True >>> kernel = CustomKernel(length_scale=2.0) >>> X = np.array([[1, 2], [3, 4]]) >>> print(kernel(X)) [[ 25 121] [121 625]]
- property bounds#
Gibt die log-transformierten Grenzen für theta zurück.
- Gibt zurück:
- boundsndarray mit Form (n_dims, 2)
Die log-transformierten Grenzen für die Hyperparameter theta des Kernels
- clone_with_theta(theta)[source]#
Gibt eine Kopie von self mit den angegebenen Hyperparametern theta zurück.
- Parameter:
- thetandarray mit Form (n_dims,)
Die Hyperparameter
- abstractmethod diag(X)[source]#
Gibt die Diagonale des Kernels k(X, X) zurück.
Das Ergebnis dieser Methode ist identisch mit np.diag(self(X)); sie kann jedoch effizienter ausgewertet werden, da nur die Diagonale ausgewertet wird.
- Parameter:
- Xarray-like of shape (n_samples,)
Linkes Argument des zurückgegebenen Kernels k(X, Y)
- Gibt zurück:
- K_diagndarray mit Form (n_samples_X,)
Diagonale des Kerns k(X, X)
- get_params(deep=True)[source]#
Parameter dieses Kernels abrufen.
- Parameter:
- deepbool, default=True
Wenn True, werden die Parameter für diesen Schätzer und die enthaltenen Unterobjekte, die Schätzer sind, zurückgegeben.
- Gibt zurück:
- paramsdict
Parameternamen, zugeordnet ihren Werten.
- property hyperparameters#
Gibt eine Liste aller Spezifikationen von Hyperparametern zurück.
- property n_dims#
Gibt die Anzahl der nicht-festen Hyperparameter des Kernels zurück.
- property requires_vector_input#
Gibt zurück, ob der Kernel auf Vektoren mit fester Länge oder generischen Objekten definiert ist. Standardmäßig True aus Kompatibilitätsgründen.
- set_params(**params)[source]#
Parameter dieses Kernels setzen.
Die Methode funktioniert sowohl bei einfachen Kernels als auch bei verschachtelten Kernels. Letztere haben Parameter der Form
<component>__<parameter>, sodass es möglich ist, jede Komponente eines verschachtelten Objekts zu aktualisieren.- Gibt zurück:
- self
- property theta#
Gibt die (abgeflachten, log-transformierten) nicht-festen Hyperparameter zurück.
Beachten Sie, dass theta typischerweise die log-transformierten Werte der Hyperparameter des Kernels sind, da diese Darstellung des Suchraums besser für die Hyperparameter-Suche geeignet ist, da Hyperparameter wie Längen-Skalen natürlich auf einer logarithmischen Skala liegen.
- Gibt zurück:
- thetandarray mit Form (n_dims,)
Die nicht-festen, log-transformierten Hyperparameter des Kernels