OOB-Fehler für Random Forests#

Der RandomForestClassifier wird mithilfe von *Bootstrap-Aggregation* trainiert, wobei jeder neue Baum aus einer Bootstrap-Stichprobe der Trainingsbeobachtungen \(z_i = (x_i, y_i)\) angepasst wird. Der *Out-of-Bag* (OOB)-Fehler ist der durchschnittliche Fehler für jede \(z_i\), berechnet anhand von Vorhersagen der Bäume, die \(z_i\) nicht in ihrer jeweiligen Bootstrap-Stichprobe enthalten. Dies ermöglicht, dass der RandomForestClassifier während des Trainings angepasst und validiert wird [1].

Das folgende Beispiel zeigt, wie der OOB-Fehler bei der Hinzufügung jedes neuen Baums während des Trainings gemessen werden kann. Das resultierende Diagramm ermöglicht es einem Praktiker, einen geeigneten Wert für n_estimators abzuschätzen, bei dem sich der Fehler stabilisiert.

plot ensemble oob
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

from collections import OrderedDict

import matplotlib.pyplot as plt

from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier

RANDOM_STATE = 123

# Generate a binary classification dataset.
X, y = make_classification(
    n_samples=500,
    n_features=25,
    n_clusters_per_class=1,
    n_informative=15,
    random_state=RANDOM_STATE,
)

# NOTE: Setting the `warm_start` construction parameter to `True` disables
# support for parallelized ensembles but is necessary for tracking the OOB
# error trajectory during training.
ensemble_clfs = [
    (
        "RandomForestClassifier, max_features='sqrt'",
        RandomForestClassifier(
            warm_start=True,
            oob_score=True,
            max_features="sqrt",
            random_state=RANDOM_STATE,
        ),
    ),
    (
        "RandomForestClassifier, max_features='log2'",
        RandomForestClassifier(
            warm_start=True,
            max_features="log2",
            oob_score=True,
            random_state=RANDOM_STATE,
        ),
    ),
    (
        "RandomForestClassifier, max_features=None",
        RandomForestClassifier(
            warm_start=True,
            max_features=None,
            oob_score=True,
            random_state=RANDOM_STATE,
        ),
    ),
]

# Map a classifier name to a list of (<n_estimators>, <error rate>) pairs.
error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs)

# Range of `n_estimators` values to explore.
min_estimators = 15
max_estimators = 150

for label, clf in ensemble_clfs:
    for i in range(min_estimators, max_estimators + 1, 5):
        clf.set_params(n_estimators=i)
        clf.fit(X, y)

        # Record the OOB error for each `n_estimators=i` setting.
        oob_error = 1 - clf.oob_score_
        error_rate[label].append((i, oob_error))

# Generate the "OOB error rate" vs. "n_estimators" plot.
for label, clf_err in error_rate.items():
    xs, ys = zip(*clf_err)
    plt.plot(xs, ys, label=label)

plt.xlim(min_estimators, max_estimators)
plt.xlabel("n_estimators")
plt.ylabel("OOB error rate")
plt.legend(loc="upper right")
plt.show()

Gesamtlaufzeit des Skripts: (0 Minuten 3,264 Sekunden)

Verwandte Beispiele

Gradient Boosting Out-of-Bag Schätzungen

Gradient Boosting Out-of-Bag Schätzungen

Merkmals Transformationen mit Ensemble von Bäumen

Merkmals Transformationen mit Ensemble von Bäumen

Release Highlights für scikit-learn 0.22

Release Highlights für scikit-learn 0.22

Entscheidungsflächen von Ensembles von Bäumen auf dem Iris-Datensatz plotten

Entscheidungsflächen von Ensembles von Bäumen auf dem Iris-Datensatz plotten

Galerie generiert von Sphinx-Gallery